LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 SEMESTER EXAMINATION – NOVEMBER 2014 B.Sc. DEGREE EXAMINATION MT5408 – GRAPH THEORY

Date & Time: / /2014/9.00 - 12.00	Dept. No.		Max. : 100 Marks
SECTION – A			
ANSWER ALL QUESTIONS:			(10 x 2 = 20)

- 1. Show that in any graph G the number of points of odd degree is even.
- 2. Let G be a (p,q) graph all of whose points have degree k or k + 1.
- 3. When a $v_n v_0$ walk is said to be closed?
- 4. Define block.
- 5. Prove that every Hamiltonian Graph is 2 connected.
- 6. Define a tree with examples.
- 7. Prove that every non-trivial tree G has atleast two vertices of degree 1.
- 8. Define eccentricity e(v) and radius r(v) in a connected graph G.
- 9. Show that $K_{3,3}$ is not planar.
- 10. Define n colorable graph with examples.

SECTION – B

ANSWER ANY FIVE QUESTIONS:

- 11. (a) Let G be a k-regular bigraph with bipartition (V_1, V_2) and k > 0. Prove that $|V_1| = |V_2|$. (b) Prove that $\delta \le \frac{2q}{p} \le \Delta$. (4+4)
- 12. Let G_1 be a (p_1, q_1) graph and G_2 be a (p_2, q_2) graph. Show that
 - (i) $G_1 \times G_2$ is a $(p_1 p_2, q_1 p_2 + q_2 p_1)$ graph.
 - (ii) $G_1[G_2]$ is a $(p_1p_2, p_1q_2 + p_2^2q_1)$ graph.
- 13. Prove that a graph G is connected iff for any partition of V into subsets V_1 and V_2 there is a line joining a point of V_1 to a point of V_2 .
- 14. Let v be a point of a connected graph G. Then show that the following statements are equivalent.
 - (i) v is a cut point of G.
 - (ii) there exists a partition of $V \{v\}$ into subsets U and W such that each $u \in U$ and $w \in W$, the point v is on every u w path.
 - (iii) There exists two points u and w distinct from v such that v is on every u w path.
- 15. Show that a line x of a connected graph G is a bridge iff x is not on any cycle of G.
- 16. Let G be a (p, q) graph. Then prove that the following are equivalent:
 - (i) G is a tree.
 - (ii) Every two points of G are joined by a unique path.
 - (iii) G is connected and p = q + 1.
 - (iv) G is acyclic and p = q + 1.
- 17. Prove that K_5 is non-planar.
- 18. (i) State and prove Euler's formula.

(ii) If G is a (p, q) plane graph in which every face is an *n* cycle then show that $q = \frac{n(p-2)}{n-2}$.

(5+3)

 $(5 \times 8 = 40)$

SECTION – C

ANSWER ANY TWO QUESTIONS:

$$(2 \times 20 = 40)$$

- 19. (a) The maximum number of lines among p points with no triangles is $\left[\frac{p^2}{2}\right]$.
 - (b) Prove that $\Gamma(G) = (\overline{G})$.
- 20. (a) Prove that in any graph G, any u v walk contains a u v path.

(b) A graph G with atleast two points is bipartite iff all of its cycles are of even length.

(5+15)

(15+5)

- 21. (a) Prove that the following statements are equivalent for a connected graph G.
 - (i) G is Eulerian
 - (ii) Every point of G has even degree.
 - (iii) The set of edges G can be partitioned into cylces.
 - (b) If G is Hamiltonian, then prove that for every nonempty proper subset S of V(G), $\omega(G-S) \leq |S|$, where $\omega(H)$ denoted the number of components in any graph H.

(15+5)

- 22. (a) Prove that the following statements are equivalent for any graph G.
 - i. G is 2 colorable
 - ii. *G* is bipartite.
 - iii. Every cycle of *G* has even length.
 - (b) Prove that every planar graph is five colorable. (8+12)
