LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

SEMESTER EXAMINATION - NOVEMBER 2014
B.Sc. DEGREE EXAMINATION

MT5408 - GRAPH THEORY

SECTION - A

ANSWER ALL QUESTIONS:

1. Show that in any graph G the number of points of odd degree is even.
2. Let G be a (p, q) graph all of whose points have degree k or $k+1$.
3. When a $v_{n}-v_{0}$ walk is said to be closed?
4. Define block.
5. Prove that every Hamiltonian Graph is $2-$ connected.
6. Define a tree with examples.
7. Prove that every non-trivial tree G has atleast two vertices of degree 1 .
8. Define eccentricity $e(v)$ and radius $r(v)$ in a connected graph G.
9. Show that $K_{3,3}$ is not planar.
10. Define n - colorable graph with examples.

SECTION - B

ANSWER ANY FIVE QUESTIONS:

11. (a) Let G be a k -regular bigraph with bipartition $\left(V_{1}, V_{2}\right)$ and $k>0$. Prove that $\left|V_{1}\right|=\left|V_{2}\right|$.
(b) Prove that $\delta \leq \frac{z q}{p} \leq \Delta$.
12. Let G_{1} be a $\left(p_{1}, q_{1}\right)$ graph and G_{2} be a $\left(p_{2}, q_{2}\right)$ graph. Show that
(i) $G_{1} \times G_{2}$ is a $\left(p_{1} p_{2}, q_{1} p_{2}+q_{2} p_{1}\right)$ graph.
(ii) $\quad G_{1}\left[G_{2}\right]$ is a $\left(p_{1} p_{2}, p_{1} q_{2}+p_{2}^{2} q_{1}\right)$ graph.
13. Prove that a graph G is connected iff for any partition of V into subsets V_{1} and V_{2} there is a line joining a point of V_{1} to a point of V_{2}.
14. Let v be a point of a connected graph \mathbb{G}. Then show that the following statements are equivalent.
(i) $\quad v$ is a cut point of G.
(ii) there exists a partition of $V-\{v\}$ into subsets U and W such that each $u \in U$ and $w \in W$, the point v is on every $u-w$ path.
(iii) There exists two points u and w distinct from v such that v is on every $u-w$ path.
15. Show that a line x of a connected graph G is a bridge iff x is not on any cycle of G.
16. Let G be a (p, q) graph. Then prove that the following are equivalent:
(i) G is a tree.
(ii) Every two points of G are joined by a unique path.
(iii) G is connected and $p=q+1$.
(iv) G is acyclic and $p=q+1$.
17. Prove that K_{5} is non-planar.
18. (i) State and prove Euler's formula.
(ii) If G is a (p, q) plane graph in which every face is an n cycle then show that $q=\frac{n(p-2)}{n-2}$.

SECTION - C

ANSWER ANY TWO QUESTIONS:

19. (a) The maximum number of lines among p points with no triangles is $\left[\frac{p^{2}}{2}\right]$.
(b) Prove that $\Gamma(G)=\Gamma(\bar{G})$.
20. (a) Prove that in any graph G, any $u-v$ walk contains a $u-v$ path.
(b) A graph G with atleast two points is bipartite iff all of its cycles are of even length.
(5+15)
21. (a) Prove that the following statements are equivalent for a connected graph G.
(i) G is Eulerian
(ii) Every point of G has even degree.
(iii) The set of edges G can be partitioned into cylces.
(b) If G is Hamiltonian, then prove that for every nonempty proper subset S of $V(G)$, $\omega(G-S) \leq|S|$, where $\omega(H)$ denoted the number of components in any graph H.
22. (a) Prove that the following statements are equivalent for any graph G.
i. $\quad G$ is $2-$ colorable
ii. G is bipartite.
iii. Every cycle of G has even length.
(b) Prove that every planar graph is five colorable.
